LDCM Workshop

Tom Lillesand

January 10, 2001

Pre-Landsat
Data
Sources
Used in
Wisconsin!!!

Pre-Landsat Data Sources (Cont.)

Representative Landsat TM and ETM+ Applications in Wisconsin

- Hydrologic Modeling
- Statewide Land Cover Mapping (WISCLAND)
- Meso-scale Crop Assessment
- Habitat Restoration
- Timber Blow-down Assessment
- Lake Water Clarity Monitoring
- Mapping Surficial Geology
- "Resource Smart" Sub-division Planning
- Siting a Truck Weigh-in-Motion Facility
- Monitoring Reed Canary Grass as an Indicator of Wetland Quality
- Forest Inventory
- Watershed Management
- Land Restoration Planning and Monitoring
 -many others

WISCLAND: Statewide Land Cover Data

- A Partnership of public and private organizations, coordinated by the Wisconsin State Cartographer's Office.
- Research based at ERSC and production at the Wisconsin DNR.
- A component of the tri-state
 Upper Midwest Gap Analysis
 Project.
- Based on Landsat TM imagery from ca. 1992, plus ancillary information from GIS databases and extensive field investigations.

WISCLAND PARTNERS

State Agencies -

- Dept. of Natural Resources
- Dept. of Transportation
- Dept. of Agriculture, Trade & Consumer Protection
- Wisconsin Geological & Natural History Survey

Federal Agencies -

- •USDA Natural Resource Conservation Service
- USDI Nat'l Biological Service, Gap Analysis Program
- •USEPA Great Lakes National Program Office
- •USDA Forest Service, Chequamegon Nat'l Forest
- •USDOI USGS, Water Resource Division

Other Partners -

- Wisconsin Power and Light
- Wisconsin State Cartographer's Office
- Wisconsin Land Information Board
- •UW-Madison, Institute for Environmental Studies

National Gap Analysis Project

WISCLAND

National Gap Analysis Project

WISCLAND

Reference Data Polygons

Identification Method

- Field verified (10,472)
- ASCS records (3,539)
 - Windshield survey (4,829)
- Other (2,088)

Total: 20,928 polygons

Remote Sensing of Lakes and Lake Ecosystems:

The Satellite Lake Observatory Initiative (SLOI)

- •UW-Madison Environmental Remote Sensing Center
- •NASA Upper Midwest Regional Earth Science Applications Center (RESAC)
- •NSF North Temperate Lakes Long -Term Ecological Research (LTER) Program
- •Wisconsin Department of Natural Resources
- Citizen Self-Help Monitoring Program

Landsat-7 ETM+ Image of the Trout Lake Region (6 October 1999)

Lakes only (land masked out) - Bands 3, 2, 1 as R, G, B

Spectral Variability of Lakes in Space

Spectral Variability of Lakes in Time

WDNR
Self-Help
Lake
Monitoring
Program

Landsat-7 satellite image acquired on 7/27/99

Sensor	Wavelength	Spectral	Measured
Channel	(µm)	Region	Reflectance
1	0.45-0.52	Blue	62.9₹
2	0.53-0.61	Green	37.85
3	0.63-0.69	Red	25.23
4	0.75-0.90	Near-infrared	19.09
5	1.55-1.75	Mid-infrared	10.17
6	2.09-2.35	Mid-infrared	9.23

Water samples collected by Lake Monitoring Volunteers

WBIC	Lake Name Da	te	SD(feet)
0852400	Lake Keesus 07	/26/99	14
0854300	Ashippun L. 07	/25/99	7
0816800	Whitewater L.07	/27/99	5
0741500	Pleasant L. 07	/28/99	11

MODEL

Model output: map of trophic state index (TSI) for all lakes

LANDSAT ETM+ Browse Images, Summer 2000 Path 25, Row 28 (North Central Wisconsin)

LANDSAT coverage (I): Trout Lake Region (North Central Wisconsin)

Challenge:

Given Cloud Cover, Is Off-Nadir Viewing Feasible Economically ???

...or, will MODIS save the day??

MODIS image of Wisconsin

24 April 2000

Secchi Disk Depth vs. MODIS Band 1 Radiance

LANDSAT ETM+ vs. MODIS 250 m, 500 m, and 1 km spatial resolution

A Reasonable Data Source, but Only for the Larger Lakes

The Commercial Multiplier Effect of Landsat-7 Type Data

The Affiliated Research Center Program

- At UW-Madison, over 150 firms interested to date
- Short-term (6-9 months) assessment
- Applications for a range of private businesses
- Fifteen <u>demonstration</u> projects since 1996, including KL Engineering

Siting and Designing a State Patrol Truck Safety and Weight Enforcement Facility Using Geospatial Information Technologies

ARC Partner:

Objectives of a Weigh-in-Motion Facility:

- Improve commercial vehicle safety
- Protect transportation infrastructure
- Facilitate compliance with transportation regulations
- Encourage equitable trucking competition

Site Selection Factors:

- Mainline Considerations (grades, interchanges, etc)
- Commercial and Residential Development
- Environmental Considerations
- Presence of Gas and Electric Lines
- Others (cost of property, soil type, etc)

Field Evaluation Tools (at present)

Landsat data

Landsat data with DEM

Corridor visualization options:

- Different Landsat band composites
- •15/30m pan sharpened
- •3-D representations
- Landsat-derived "fly-throughs"

"Finer than Landsat" Fly-throughs

Fly-throughs were created to help visualize the 45+ mile corridor and selected sites. Manipulation of the data and the software offer different perspectives.

Fly-through using 1m data

Annotated 1m image

30 m Landsat 7 ETM+

PhotoLog Front View

PhotoLog Side View

Site "Drive Through"

Landsat 7 ETM+ Application

The Technology Push and Application Pull of Remote Sensing

Landsat Data

- A Scientific Staple
- A <u>Commercial Multiplier</u>
- A <u>Capital Investment</u> in Scientific, Commercial, and Social Progress

"One of the most significant problems in remote sensing has been the lack of direction for the program."

Land Remote Sensing Satellite Advisory Committee -- 1983

Testimony on Behalf of ASP(RS) before House Committee on Science and Technology

Subcommittee on Space Science and Applications and

Subcommittee on Natural Resources, Agricultural Research and Environment

July, 1983

"While I am not familiar with all segments of the user community, those with which I am currently represent a rather fragile market for Landsat data.

The reasons for this are many and varied but they revolve principally around the following:

- •The continued uncertainty about the status of the Landsat Program.
- The conduct of the Landsat program fundamentally as an experimental, rather than operational, activity.
- The fundamental shift in the philosophy determining the price structure for Landsat data.
- The lack of aggregation of Landsat users."

"Again, we must consider the scientific value

of Landsat data along with their market value

in implementing our present decision-making process."

"The real challenge before us is to recognize our remote sensing program as a public good

and to formulate a policy for the program which will insure future

scientific advances,

assist in the proper

stewardship of our natural resources, provide

creative commercial opportunities,

and bring remote sensing to a much higher position in our national agenda."